

UpCycling: Semi-supervised 3D Object Detection without Sharing Raw-level Unlabeled Scenes

- Semi-supervised learning: Using *de-identified, unlabeled* intermediate features

- Sharing de-identified feature data and the detection results
- Semi-supervised learning with collected data and secured data

Sunwook Hwang¹, Youngseok Kim¹, Seongwon Kim², Saewoong Bahk¹, Hyung-Sin Kim¹ ¹Seoul National University, ²SK Telecom

ure augmentation methods for SSL								
0)			E					
Noise	10	ot.	F- GT		AP_{3D}			
N	RS	Rot.	F-	Easy	Mod	Hard		
				70.58	56.00	47.94		
				$-16.\bar{3}1$	-20.09	-19.79		
\checkmark				+0.03	+0.13	-1.23		
	\checkmark			+2.47	-0.96	+0.63		
	\checkmark			-11.69	-13.75	-13.32		
		\checkmark		+4.80	+5.42	+7.96		
			\checkmark	+7.81	+7.87	+8.14		

Privacy Protection of Feature Sharing

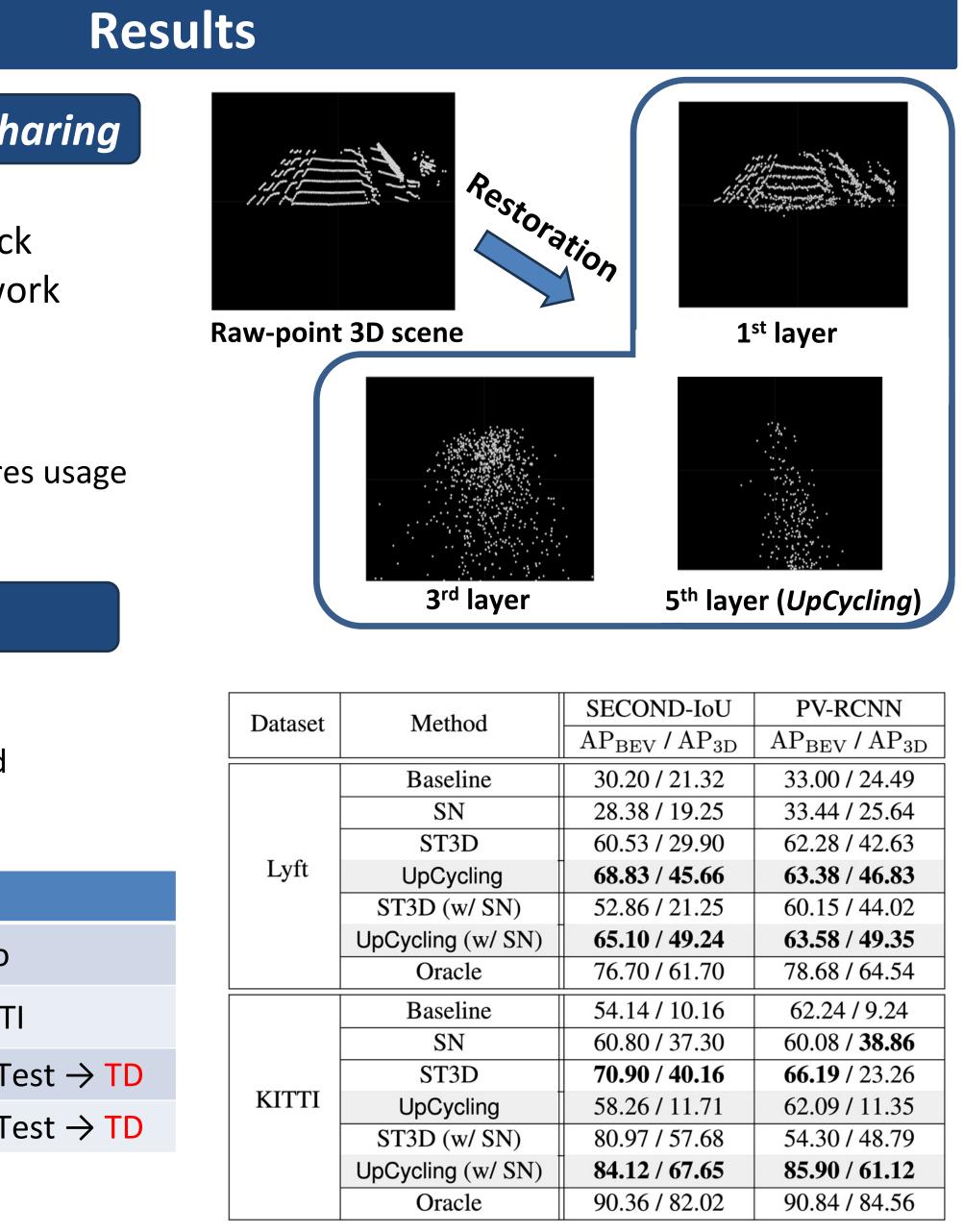
- Privacy leaks from inversion attack
- Restoration from backbone network
- > 1st, 3rd, and 5th convolution layers
- Privacy Protection via *UpCycling*
- Assured through deepest-layer features usage

Domain Adaptation

- Achieving SOTA accuracy
- Regardless of the model, dataset, and detection task

Settings			
Source domain (SD) Wayr			
Target domain (TD)	Lyft, l	<itt< th=""></itt<>	
Baseline	Train \rightarrow SD	Т	
Oracle	Train \rightarrow TD	Т	

Partial-label Scenario


- Superiority to the SOTA method in most cases

AP _{3D}		2%			10%		25%			
		Easy	Mod	Hard	Easy	Mod	Hard	Easy	Mod	Hard
SECOND-IoU	Baseline	56.69	44.11	37.19	70.58	56.00	47.94	84.47	71.06	62.87
	3DIoUMatch	63.57	49.58	43.00	71.76	57.01	50.08	81.71	68.51	60.92
	improved (%)	12.13	12.39	15.62	1.67	1.80	4.47	-3.26	-3.59	-3.11
	UpCycling	70.19	59.97	44.83	76.09	60.41	51.84	85.22	72.87	63.93
	improved (%)	23.81	35.96	20.54	7.81	7.87	8.14	0.89	2.55	1.69
	Baseline	68.10	53.27	46.20	81.23	68.67	60.32	87.63	76.03	68.62
	3DIoUMatch	81.04	65.77	58.83	85.26	70.64	63.32	85.08	72.37	65.02
PV-RCNN	improved (%)	19.00	23.47	27.34	4.97	2.87	4.98	-2.91	-4.81	-5.25
	UpCycling	76.46	61.44	52.94	83.64	69.60	63.53	88.05	76.61	70.80
	improved (%)	12.28	15.34	14.59	2.97	1.35	5.32	0.48	0.76	3.18

- privacy leakage, and AV-side computation burden altogether
- Verified the effectiveness feature-based learning
- Achieving SOTA accuracy with large margins in various experiments

PARIS

Less mature, large-backbone model underperform with scarce labels ($\leq 10\%$)

Conclusion

A novel SSL framework by gathering de-identified & unlabeled data: Labeling cost,